
Securing Security Tools

SuriCon 2016

Pierre Chiìier

pierre.chifflier@ssi.gouv.fr

French National Information Security Agency

2016



ANSSI

◮ Created on July 7th 2009, the ANSSI (French Network and

Information Security Agency) is the national authority for the

defense and the security of information systems.

◮ Under the authority of the PrimeMinister

◮ Main missions are:
◮ prevention
◮ defense of information systems
◮ awareness-rising

http://www.ssi.gouv.fr/en/

ANSSI Securing Security Tools 2/28

http://www.ssi.gouv.fr/en/


Securing Security Tools

Objectives of this talk:

◮ Improving security of tools

◮ Not on small steps, but trying to solve problems

◮ Consider alternatives to common solutions

◮ Test our claims

ANSSI Securing Security Tools 3/28



What is a network IDS ?

A device that

◮ monitors network for malicious activity

◮ does stateful protocol analysis

◮ raises alerts to the administrators

◮ has to be fast

ANSSI Securing Security Tools 4/28



What is a network IDS ?

From the security point of view, a NIDS is:

◮ exposed to malicious traíc

◮ running lots of protocols dissectors

◮ connected to the admin network

◮ coded for performance

ANSSI Securing Security Tools 5/28



Root causes

◮ Bad speciícations
◮ when they exist

◮ Design complexity and attack surface

◮ Formats complexity

◮ Programming language

◮ Paradox: many security tools are not securely coded
◮ “I’ll íx it later”
◮ Infosec people considering it’s “not their job”

ANSSI Securing Security Tools 6/28



Mimimal solutions

◮ Finding vulns does not (really) help security!
◮ But it helps (raising awareness, demonstrating the problem, etc.)
◮ The bug is íxed
◮ Butwhat about the (probablymany) others?

◮ Fuzzing is not the solution either
◮ Level 0 of security audit
◮ But itworks

◮ Building secure tools provides much more value
◮ It’s also much more complicated

ANSSI Securing Security Tools 7/28



Solutions

◮ Software environment: minimize consequences of a problem

◮ Software: try to avoid problems

ANSSI Securing Security Tools 8/28



ArchitectureHardening: overview

◮ Reduced capabilities

◮ Isolated components

◮ Write⊕ Execute

◮ Send-onlymechanism for logs
◮ Tip: you canwrite data to a Unix socket in a RO-mounted partition

◮ Harden kernel

◮ Read-only containers (everything except /run)

◮ See [CF14] (french)

ANSSI Securing Security Tools 9/28



Architecture

collect

send

IDS1

in1

IDS2

in2

IDS3

in3

base system

m

Monitored

network

Security

admin

network

TAP

eth1eth0

(ipsec)

ANSSI Securing Security Tools 10/28



Hardening software

◮ Reduce attack surface

◮ Secure design: simple, isolated components

◮ Managedmemory

ANSSI Securing Security Tools 11/28



Suricata

Note on Suricata

◮ Good points:
◮ Security awareness
◮ Coding style
◮ QA tools: unit tests, build bot, etc.

◮ But canwe get rid of potential memory problems ?
◮ Buéer over÷ows
◮ Pointer arithmetic
◮ Use-after-free
◮ . . .

ANSSI Securing Security Tools 12/28



Hardening software

Design changes:

◮ Split components

◮ Use adequate language

◮ Easy to say

◮ Let’s try!

ANSSI Securing Security Tools 13/28



The Rusticata proof of concept

Motivations

◮ Isolate critical code (parsing)
◮ Parsers should focus on protocols, not pointers

◮ Keep performance

◮ Build robust tools by design

ANSSI Securing Security Tools 14/28



Why not C?

How to code a secure parser in C:

a. defensive programming→ fail

b. use QA tools: unit tests, etc. → fail

c. use fuzzing→ fail

d. you’re the C god! → doubtful

Results: not so good

◮ Parsing is hard (ex: JSON [Ser16])

◮ For ex: Wireshark, 60 vulns in 2105, 57 in 2016

◮ Of course,my own code

ANSSI Securing Security Tools 15/28



Alternatives

◮ OCaml, Haskell

◮ Python, Ruby, Perl

◮ Go, Rust

◮ C++, Java

◮ Lua

◮ Javascript

See [JO14] forwhy to excludemany of them

ANSSI Securing Security Tools 16/28



Language choice

Yet another language? We want the following properties:

◮ Easy to embed

◮ Memory safety

◮ Strong typing1

◮ Thread safety

◮ No garbage collector (world stop)

◮ Fast data exchange with C

◮ Eêcient, avoid useless copies

◮ Good community

Good candidate: Rust

1Which has nothing to dowith pressing the keys harder

ANSSI Securing Security Tools 17/28



Overview

Rusticata: 3 main parts

◮ Suricata: fake app-layer (C)

◮ Rusticata: glue layer, wraps the C arguments for Rust (Rust)

◮ Rust parsers: independant projects (Rust)

Notes

◮ Existing signature engine is used

◮ Log helper functions too

ANSSI Securing Security Tools 18/28



Parser generator

Nom [G.15] allows to describe data, and generate the parser

Reading bytes:

b1 = read_next_byte(&i);

type = b1 as u;

b2 = read_next_byte(&i);

b3 = read_next_byte(&i);

length = b2 >> 8 + b3; // big-endian

Describing data:

parse_record(&i) {

type: be_u8,

length: be_u16,

}

Better readability⇒ less bugs

ANSSI Securing Security Tools 19/28



Example: the SSL/TLS parser

◮ Secure almost all internet communications

◮ Complex protocol [BBDL+15]

◮ State-oriented parsing

◮ Multiple layers, application-level fragmentation

◮ Good comparisonwith the existing parser2

2I plead guilty forwriting the previous one . . .

ANSSI Securing Security Tools 20/28



Example of changes (real code)

uint16_t cipher_suites_length =

input[0] << 8 | input[1];

input += 2;

input += cipher_suites_length;

if (!(HAS_SPACE(1)))

goto invalid_length;

/* skip compression methods */

uint8_t compression_methods_length =

*(input++);

input += compression_methods_length;

ciphers_len: be_u16 ~

ciphers: flat_map!(take!(ciphers_len),parse_cipher_suites) ~

comp_len: take!(1) ~

comp: count!(be_u8, comp_len[0] as usize) ~

ANSSI Securing Security Tools 21/28



The TLS parser

Skipping to the results (tech. details in other slides)

◮ covers SSLv3 to TLS 1.2

◮ more features than the C parser (extensions, defragmentation)

◮ some parts missing (detection keywords)

◮ less code: ~400 lines vs 800 for the same features

◮ rust parser is now ~900 lines

◮ less time to code

◮ almost entirely zero-copy

◮ no unsafe code

ANSSI Securing Security Tools 22/28



Bonus: TLS statemachine

Handshake

Server has Certificate

Client Certificate Requested

Server has no Certificate

Closing

ClientHello HelloRequestMsg

ServerHello

ServerHelloMsg

ResumeSession

ServerHelloMsg

HelloRequestMsg

ServerCert_ServerCertificate

CertificateMsg

NoCert_ServerKeyExchange

ServerKeyExchangeMsg

HelloRequestMsg

ClientChangeCipherSpec

ChangeCipherSpecMsg

ClientFinish

ClientFinishMsg

HelloRequestMsg

ClientCert_CertificateRequest

CertificateRequestMsg

ServerCertCannotEnc_ServerKeyExchange

ServerKeyExchangeMsg

HelloRequestMsg

ClientCert_ServerHelloDone

ServerHelloDoneMsg

CertificateRequestMsg

HelloRequestMsg

ServerCert_ServerHelloDone

ServerHelloDoneMsg

HelloRequestMsg

ServerCert_ClientKeyExchange

ClientKeyExchangeMsg

HelloRequestMsg

ClientCert_ClientCertificate

CertificateMsg

ClientCert_ClientKeyExchange

ClientKeyExchangeMsg

ChangeCipherSpecMsg

ClientCertCanSign_CertificateVerify

CertificateVerifyMsg

ChangeCipherSpecMsg

ChangeCipherSpecMsg

HelloRequestMsg

NoCert_ServerHelloDone

ServerHelloDoneMsg

HelloRequestMsg

NoCert_ClientKeyExchange

ClientKeyExchangeMsg

ChangeCipherSpecMsg

HelloRequestMsg

ServerChangeCipherSpec

ChangeCipherSpecMsg

HelloRequest

Established

FinishMsg

Start

ClientHelloMsg

ClientHelloMsg

HelloRequest

HelloRequestMsg

ClientClosed

CloseAlertError

ServerClosed

CloseAlertError

ClientHelloMsg NoRegotiationWarning

ClientClosedAcknowledged

CloseAlertError

ServerClosedAcknowledged

CloseAlertError

◮ New parser oéers

possibilities to go further

◮ We can now express more

complex security checks

◮ Extension: represent the TLS

statemachine

◮ Detect invalid transitions

ANSSI Securing Security Tools 23/28



Bonus: TLS statemachine

Rust representation:

match (state,msg) {

(TlsState::None, &TlsMessageHandshake::ClientHello(ref msg)) => {

match msg.session_id {

Some(_) => Ok(TlsState::AskResumeSession),

_ => Ok(TlsState::ClientHello)

}

},

// Server certificate

(TlsState::ClientHello, &ServerHello(_)) => Ok(TlsState::ServerHello),

(TlsState::ServerHello, &Certificate(_)) => Ok(TlsState::Certificate),

// Server certificate, no client certificate requested

(TlsState::Certificate, &ServerKeyExchange(_)) => Ok(TlsState::ServerKeyExchange),

Match possible on either message type or content

ANSSI Securing Security Tools 24/28



Are we safe now?

Is the problem solved for good?

◮ Buéer over÷ows, pointer errors, double frees -> no more!

◮ Programming logic / algorithmic errors -> still here

◮ Compiler errors -> can happen

ANSSI Securing Security Tools 25/28



Lessons learned

◮ Choosing a good language helps
◮ Strong typing is great
◮ Exhaustive pattern matching

◮ Cost: learning a new language
◮ Lifetimes can be hard (for good reasons)

◮ Development time: same as C on írst parsers, faster after

◮ Debugging time: greatly reduced, no debugger required!

◮ Nomore segfault

ANSSI Securing Security Tools 26/28



Get the code

◮ Project main address: https://github.com/rusticata

◮ Suricata fake app-layer + detection

◮ Rusticata: wraps parsers (only TLS for now)

◮ Design document in the Rusticatawiki

◮ Rust parsers:
◮ TLS
◮ DER
◮ NTP
◮ SNMP
◮ soon: X.509, IKEv2, ...

ANSSI Securing Security Tools 27/28

https://github.com/rusticata
https://github.com/rusticata/rusticata/wiki/Design
https://github.com/rusticata/tls-parser
https://github.com/rusticata/der-parser
https://github.com/rusticata/ntp-parser
https://github.com/rusticata/snmp-parser


Conclusion

◮ Looking at things diéerently is important

◮ Try to íx bugs for good

◮ Memory-safe parsers are a huge security improvement
◮ Proof of concept: success
◮ Not meant to replace all existing parsers
◮ Requires somework to go further

◮ No global rewrite required, only sensitive code

Questions ?

ANSSI Securing Security Tools 28/28



References



References

[BBDL+15] Benjamin Beurdouche, Karthikeyan Bhargavan, Antoine Delignat-Lavaud, et al.

Amessy state of the union: taming the composite statemachines of TLS.

In IEEE Symposium on Security & Privacy 2015 (Oakland’15), 2015.

[CF14] P. Chiìier and A. Fontaine.

Architecture système d’une sonde durcie.

Conference C&ESAR, 2014.

[G.15] Couprie G.

Nom, a byte oriented, streaming, zero copy, parser combinators library in rust.

2015 IEEE Security and Privacy Workshops (SPW), 2015.

[JO14] E. Jaeger and Levillain O.

Mind your language(s): A discussion about languages and security.

2014 IEEE Security and Privacy Workshops (SPW), 2014.

[Ser16] N. Seriot.

Parsing json is amineíeld.

http://seriot.ch/parsing_json.html, 2016.

ANSSI Securing Security Tools 2/2

http://seriot.ch/parsing_json.html

	Appendix

